FGCU Emergency Management Advisory

Sept. 27, 2022 | FGCU is canceling all classes and non-essential campus activities Thursday and Friday. FGCU leaders will evaluate methods for students to make up for lost instructional time, which will likely include the use of planned study dates as regular academic class. Please expect updates to the academic calendar once we return to normal operations. For storm updates, visit fgcu.edu/emergencymanagement.

Learn More


Research is a primary focus of the Everglades Wetland Research Park.

Many faculty, postdocs, graduate students, staff, student interns, and visiting scholars frequenting the offices and labs of the beautiful new Kapnick Center are doing research that is key to the survival of our ecosystems and indeed our planet. Several research projects are already active at the EWRP are listed here.

 Research Topics:



Nutrient Removal Efficacy of Wetland Plant Communities in the Florida Everglades

This 3-year, 18-mesocosm study focused on estimating the efficacy of different wetland plant communities for reducing phosphorus input into the Florida Everglades. This project was part of the overall Everglades Restoration where 23,000 ha of wetlands, called Stormwater Treatment Areas (STAs), have been created on former agricultural land that had, in turn, replaced wetlands decades ago. The study investigated if certain types of wetland communities are better than others in reducing phosphorus inputs to the Florida Everglades, thus reducing the invasion of plants such as Typha (cattails) from taking over the native Cladium (sawgrass) in the Everglades “river of grass.”  Our study (Mitsch et al. 2015) found that by the end of the study, the Nymphaea, control/Chara, and Typha vegetation communities had lower outflow phosphorus concentration than the inflow (p < 0.05) with average outflow concentration of 11 ± 1, 15 ± 3 and 16  ± 1 ppb respectively. We conclude that any treatment wetland constructed with local Florida soils and designed to achieve low (~10–15 ppb P) concentrations would probably take a minimum of 2 years to become sinks of phosphorus. We also conclude that wetlands can be created to achieve these low thresholds if low TP loading and self-design strategies are incorporated into the project design (Mitsch et al., 2015). Two companion studies on this project are also published.  Villa and Mitsch (2014) investigated the contribution of the different wetland plant species to exported DOC (and by inference to DOP) by using carbon stable isotope techniques.  Marois et al. (in press) investigated the relative importance of aquatic metabolism on the retention of phosphorus in these vegetation communities and found that plant communities without emergent macrophytes may perform best in the retention of phosphorus in low inflow concentration conditions.